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Description 
In this subtask (2.3) we develop a method to estimate solar power variability over the SDG&E territory. 
The objective is to optimize the deployment of SDG&E’s radiometric network in order to facilitate 
forecasting activities. For a given service territory, defining the number and location of areas with 
similar/dissimilar solar variability characteristics allows the utility company to strategically site solar 
generation assets, and to incentivize or discourage solar growth in regions that diminish grid reliability. A 
resource cluster analysis is designed for planning and operations for future solar growth through the 
spatial averaging of production fluctuations. Additionally, understanding the variability associated with 
different regions enables system operators to improve decision-making on unit dispatch by increasing the 
confidence of unit commitment operations, predicting intra-hour dispatch and reducing automatic 
generation control (AGC) errors. To this end, we determine the optimal number and spatial distribution of 
regions of coherent global irradiance based on an unsupervised learning cluster analysis. 
 
 
1. Data Acquisition  
In order to investigate coherent clusters of similar broadband Global Horizontal Irradiance (GHI) while 
maintaining a uniform spatial discretization over utility-scale areas of interest, irradiance data derived 
from satellite images is employed for the cluster analysis in this subtask. In particular, we use GHI data 
from the SolarAnywhere [1] Enhanced Resolution dataset for 2009 and 2010. This dataset consists of GHI 
derived from the semi-empirical SUNY model which extracts global and direct irradiances from the visible 
channel of geostationary weather satellites [2]. The spatial and temporal resolution of the dataset are 
0.01° x 0.01° (~1 km x 1 km) and 30 minutes respectively. The spatial domain of interest covers the 
landmass of Southern California between 32°-34°N and 116°-119°W. This utility-scale domain includes the 
San Diego Gas & Electric service area which supplies power to a population of 1.4 million business and 
residential accounts in a 4,100 square-mile service area spanning 2 counties and 25 communities. 
 
2. Methodology  
 
2.1 Clear Sky Index 
To remove variability associated with deterministic diurnal/seasonal solar cycles, we normalize the GHI 
time series with respect to a clear sky model (CSM) [3]. Rather than employ a multi-parameter CSM, which 
can require up to eight atmospheric inputs, in this task we employ the bulk-parameter CSM developed by 
Ineichen and Perez (2002) [4] which requires only the Linke turbidity coefficient as an input. 
The normalized GHI, or clear-sky index Kc as it is more commonly known, is defined as: 
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where )(tGh  is the modeled GHI at time t, )(tGhc  is the modeled clear-sky GHI at time t, and the 

dimensionless quantity Kc  tends  to vary between 0 and 1. 
 
2.2 Variability of the Clearness 
As a first step towards coherent GHI clustering, daily variability is considered in this project. To this end, it 
is desirable to compile daily (rather than intra-hourly) parameters at each pixel to be employed in the 
cluster analysis. In order to accomplish this, Kc frames corresponding to the same day are averaged at each 
location to yield vectors of average daily clearness. Note that prior to the normalization, integration of 
daily GHI values over a day is equivalent to the total daily energy per pixel area (Jm-2) and speaks to the 
pixel's relative potential for energy production. However, after normalization the integral represents the 
Daily Average Clear-Sky Index ρ for a given pixel, which is a dimensionless parameter that tends to vary 
between 0 and 1. 
The extracted feature ρ for a daily time course of Kc defined on a closed interval [0,Tγ] is approximated by 
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the trapezoidal rule: 
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where Tγ is the total daylight time (sec) of γ frames for each day, which varies with the day/season.  
 
2.2.1 Clustering feature #1 
A feature ρ (referred to as the clustering feature #1) that represents appropriately the daily average 
clearness over each precise location of the gridded domain of interest was initially extracted from the 
normalized GHI data.  
 
This definition of ρ possesses several benefits including, being independent of units, eliminating 
inconsistencies in the length of days, and is void of deterministic fluctuations resulting in a time series 
which is dimensionless, bounded, stationary, and completely stochastic. 
 
2.2.2 Clustering feature #2 
Additionally, a second extracted feature (referred to as the clustering feature #2) has been added to this 
project in order to give emphasis on the fluctuations of the daily clearness index ρ. The variability index is 
described by the consecutive absolute step changes of the daily average clear-sky clearness index over a 
precise surface area. 
 
Rather than use the temporal vectors of ρ in the cluster analysis, a final post processing is applied which 
aims to investigate the variability of clearness at each pixel. To this end, we define a new variability 
measure of the Daily Average Clear-Sky Index as: 
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where M is the number of days in the dataset for the ith pixel. 
We expect to have low values of Δρ for consecutive similar cloud-conditions and high values for a 
sequence of fluctuating clear and cloudy days. 
 
2.2.3 Feature Vectorization 
With a preprocessing technique the original dataset is transformed in a way such that each element of a 
vector represents each of the two clustering features for each location in the area of interest. Figure 1 
depicts the described feature extraction stage for the clustering feature #2, where the N land-cover pixels 
are used to construct N temporal vectors that represent the course of Δρ at each pixel's location.  
 

 
Figure 1 - A sequence of consecutive Kc frames over Southern California. The lower blue segment is not a territory of 
the United States and is not included in the experiments. An example of how the concatenated pixels over a specific 
location are used to calculate the daily ρ value is illustrated (left). All the temporal vectors (blue lines) that represent 
the M-1 daily differences of ρ (red dots) for each of the N pixel locations are then stacked to create the Δρ feature's 
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dataset (middle). A dimensionality reduction method (un-centered PCA/SVD) precedes to provide the clustering input 
dataset (right). 

 
2.2.4 Dimensionality Reduction 
The high dimensionality of the temporal vectors requires a dimensionality reduction in order to lower the 
computational complexity and remove noise from data. For that purpose we employ the most widely used 
linear dimensionality reduction method, the Principal Component Analysis (PCA) [5]. In this subtask, the 
PCA via Singular Value Decomposition (SVD) projects the initial high dimensional un-centered data (no 
mean-centering) into the best low-dimensional linear approximation in such a manner that 99% of the 
initial variance of the data is preserved [18]. 
 
 
3. Clustering Approach 
The k-means clustering algorithm [6] is applied in conjunction with a stable initialization method to 
diminish its dependency to random initial conditions. Clustering validation is performed by the 
computation of two internal validity indices [7,8], in order to investigate the number of clusters that best 
captures the cohesion and separation of the clustering partition with respect to the parameterization of 
the variability distribution problem. The appropriate number of clusters is estimated by a simple and 
efficient graphical method, known as the L-method [9]. 
 
3.1 Clustering by the k-means and Initialization Method 
The k-means algorithm is the most widely used and simple partitioning clustering method of unsupervised 
learning [10, 11]. The reasons for its popularity rely primarily on its scalability and simplicity. On the other 
hand, the algorithm also suffers from a number of limitations. Primarily, it considers the underlying 
structure of the data as hyper-spherical, owing to the typical selection of the Euclidean distance as the 
primary clustering criteria. For this reason, k-means partitions may be fallacious for dataset structures 
composed by non hyper-spherical shapes. In addition, the requirement to define a priori the number of k 
clusters can also be considered as a primal handicap. The default iterative refinement algorithm [12] of k-
means uniformly chooses a random number of k points as the initial centers of the desired k clusters, 
where each point of the dataset is assigned to its closest center. Subsequently, the position of the k 
centers is iteratively optimized by the minimization of the distance criteria between the points of a cluster 
to its center. The algorithm stops either after a predefined number of iterations or when a convergence 
threshold value of a criterion function is reached. Hence, it is obvious that k-mean's effectiveness depends 
on how close the initial centers are to the final partition. The initialization of different seed centers 
generates divergent final clustering solutions. In addition, the risk of convergence to local minima of the 
criterion distance is high. 
 
In order to achieve a stable solution, several heuristic algorithms have been proposed. Celebi et al. (2013) 
[13] presented a comprehensive survey along with a comparative study of k-means initialization methods. 
These methods are mainly distributed by their time complexity and their deterministic or non-
deterministic heuristic approach to select the initial centers. In this project, we apply a deterministic 
initialization scheme that provides stable seed centers with respect to a structural parameter [18]. The 
first step in the two-step method is to select m=3k points based on the density of the reverse nearest 
neighbors (RNN) [14]. At the second step, k initial centers are finally selected which are spaced at least by 
a predefined threshold distance and count the maximum number of nearest members in descending 
order.  
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Figure 2 - Three-dimensional plots of the dataset (black dots) used in the experiments in the Principal component (PC) 
axes. Each of the black dots represents the 3-component feature vector at every spatial location (pixel) of the service 
area as lying in the direction/subspace that corresponds to the three first PCs. On the left, the first m = 3k selected 
centers at the first step of the initialization method are shown as green square symbols. On the right, a selection of k 
centers that are spaced at least by a predefined distance and count the maximum number of nearest neighbors in 
descending order are finally used as the cluster centers. Different initial seeds are acquired by applying different 
threshold distances and k number of centers. 

 
3.2 Internal Clustering Validity Indices  
The criteria used to estimate how well a proposed clustering fits the structure underlying the partitioned 
data are called cluster validity indices. In the case that no correct or known partition is available, the 
clustering validation is achieved by estimating internal measures of the data such as the compactness and 
the inter separation of the clusters. These types of criteria are known as internal cluster validity indices.  
Milligan and Cooper (1985) [16] compared 30 validity indices that existed by that time and constitutes an 
important reference in cluster analysis. Recently, Arbelaitz et al. (2013) [17] published an extensive 
comparative study of popular and self-subsistent cluster validity indices in different experimental 
configurations and suggest guidelines to select the most suitable for any particular environment. Typically 
these indices are based on the computation of the intra-cluster cohesion and the inter-cluster separation. 
The indices can then estimate the partitions quality in terms of different variations of ratio-type and 
summation-type factors. These factors are commonly related to the geometrical or statistical properties of 
the clusters, the similarity or dissimilarity between the data, the number of partitioned data, and/or the 
number of clusters.  
 
Indeed, a good clustering is equivalent to close quantifiable distances among the member points of a 
cluster and at the same time, high distinction from the points of other clusters. Most of these methods 
tend to consider the clusters as hyper-spherical shapes providing the clusters centers as a benchmark for 
the measurement of compactness and separation. Taking into account the properties of the most 
frequently cited internal validity measures, the Calinski-Harabasz [7] and the Silhouette [8] indices are 
employed as the most suitable for this project among others.  
 
3.3 L-method 
Estimating the appropriate number of clusters is one of the most ambiguous steps in cluster analysis. 
Therefore, we seek the knee point of a validity index curve that corresponds to the number of clusters 
after which no significant change in value of the considered index occurs. In this project we adopt an 
efficient knee point detection method, called the L-method [9]. The L-method is used for the location of 
the crucial point on the evaluation graph of any validity index. The main advantage of the L-method is that 
it does not require the execution of the clustering algorithm itself. It performs a rapid standalone 
procedure on the curve of an already implemented validity index graph. Unlike the model-based methods, 
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the L-method detects the boundary between the pair of straight lines that best fit either side of the curve. 
For example, the ideal shape of the curve forms an ‘L’ which implies a sharp change of the considered 
index’s values to a uniform segment. In this case, two lines are fit to the approximately linear left and right 
parts of the curve indicating the crucial point of discontinuity of the two lines. It should be noted that no 
significant change of the validity index prevails at the curve segment following the knee point indicating 
that the clusters are no longer discrete and they do not contribute to an appropriate partition. Regarding 
less ideal curves where a monotonically smooth decrease occurs, the point of discontinuity of the pairs of 
lines that best fit the underlying shape of the curve locates the point after which the curve continues more 
smoothly than at any other point.  
 
The L-method can be implemented by defining an evaluation graph where the values of a validity index 
are on the y-axis and the number of clusters on the x-axis. By selecting iterative sequences of points left 
and right of every possible point that can be considered as a knee point, we create all the possible pairs of 
fitted lines on either side. The first left sequence of points, L, must necessarily be comprised by the first 2 
points of the curve whereas the right part, R, contains the remaining and so forth. This method covers 
every possible pair of lines. According to the least squares method, a first-degree polynomial P 
approximates the given points of every line segment linearly.  
The L-method determines the appropriate pair of lines that best fit the monotonicity of the curve by 

minimizing the total root-mean-square error 
to ta lRMSE  calculated as: 
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where c corresponds to the vertical projection on x-axis of the point of discontinuity of the left and right 

lines, LRMSE  and RRMSE  are their root-mean-square error, respectively, and b is defined as the 

maximum number of clusters. The crucial point ]2,3[  b  is defined as: 
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and indicates the appropriate number of clusters. Figure 3 shows an implementation of the L-method 
over the evaluation graph of the validity index CH values.  
 

 
 
Figure 3 - Determination of the appropriate number of clusters by the implementation of the L-method over the 
evaluation graph of the CH cluster validity index. From left to right: the diagram of the values of the considered index 
(y-axis) versus the number of clusters (x-axis), the plot of all possible pairs of fit lines (red and green), the RMSE curve 
with respect to each candidate knee point (the minimum RMSE, i.e. the knee point, is marked with a green square) 
and, at the right, the best fit lines where the point of discontinuity defines the knee point.  
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4. Clustering Maps 
The methodology described in the previous section is graphically illustrated in Figure 4. Clustering 
processes were conducted to a variety of numbers of clusters and the quality of each clustering was 
evaluated by the validity indices. The appropriate number of clusters is estimated by the L-method where 
results show convergence to a narrow range of clusters for the two validity indices.  
A representative mapping of coherent irradiance clusters is then produced for the region of interest, and 
the determination of the optimal range of required telemetry sites, and the respective locations for 
placing solar monitoring installations is calculated. 
 

 
Figure 4 - Block diagram of the proposed methodology 

 
Depending on the clustering feature used, a representative spatial segmentation scheme comprises 16 
(clustering feature #1) or 14 (clustering feature #2) coherent clusters in Southern California. Respectively, 8 
and 7 of them are located in the SDG&E service area (see Figures 5 and 6). The results show that a narrow 
range of distinguishable number of clusters derived by the proposed cluster analysis exists, where their 
centers define the optimum locations of monitoring station installations. Relevant relationships between 
locations are summarized in Table 1 for 8 cluster centers identified in SDG&E territory and Table 2 for the 
7 clusters identified.  
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Table 1: Results based on clustering feature #1, the daily averaged clear sky index (see Fig. 5 for a map). 8 cluster 
centers are identified. The closest SDG&E met station is listed and (GHI) indicates that that station already has a 

global horizontal solar irradiance (GHI) sensor. We recommend placement of GHI sensors at location AMO (1), SOB 
(2), WSY (5), and RAN (8) 

 Location of Cluster Center Closest SDG&E Met Station 
Distance and direction to SDGE 
station. Station is 

1 33.3467 , -117.2642 AMO Ammo Dump 0.9 miles North 

2 33.0151, -117.2341 
SOB 
RSF 

2.5 miles West 
2.9 miles East 

3 32.814100, -117.0435 MTL Mission Trails (GHI) 2.1 miles North 

4 32.995, -116.8829 
MGR (GHI)_ 
CLM 

1.6 miles West 
1.5 miles North 

5 33.0854, -116.6923 WSY 0.9 miles East 

6 32.7337, -116.5418 
CIR Corte Madera 
MOR (GHI) 

3.4 miles North  
3.7 miles South 

7 32.8543, -116.1304 IMP (GHI) 9.2 miles 

8 
33.2161, -116.4615 
 

RAN 
NRW (GHI) 

2.8 miles 
11.2 miles 

 

 

 
Figure 5 – Irradiance microclimate clusters in the SDG&E service area based on clustering feature #1, the daily 
average clear-sky index. Since the irradiance forecasting skill depends on high quality ground data with high spatial 
and temporal resolution we recommend installation of additional sensors. Please note that center location 7 has 
strong topographical constraints.   
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Table 2: Results based on clustering feature #2, the day-to-day variation in averaged clear sky index (see Fig. 6 for a 
map). 7 cluster centers are identified. The closest SDG&E met station is listed and (GHI) indicates that that station 
already has a global horizontal solar irradiance (GHI) sensor. All cluster centers have a SDG&E weather station with 
GHI sensor within 4.1 miles. We recommend palcement of sensors at location TDS (1), MPE (4) and FBK (5).  

 Location of Cluster Center Closest SDG&E Met Station Distance and direction to SDGE 
station. Station is 

1 32.633 -116.331 
TDS 
BVDC1 (GHI) 

1.2 miles 
4 miles 

2 32.854 -116.652 
WDC 
NDC (GHI) 

1.3 miles 
2 miles 

3 32.884 -116.853 
BVY 
RIO (GHI) 

1.3 miles 
3.2 miles 

4 32.834 -117.174 
MPE 
MSP (GHI) 

3.5 miles 
4.1 miles 

5 33.327 -117.194 
FBK 
CIR (GHI) 

2.5 miles 
4 miles 

6 33.578 -117.445 ORT (GHI) 3.8 miles 

7 33.457 -117.615 SCR (GHI) 2.1 miles 

 
 

 
Figure 6 - Irradiance microclimate clusters in the SDG&E service area, based on clustering feature #2 (7 cluster 
centers). 

 
5. Validation with Ground Measurements 
Additionally, a validation of the proposed clustering that was applied to satellite solar resource data from 
Solar Anywhere is performed through a comparison to available ground-based radiometric stations in the 
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region of interest. Hourly ground measurements from meteorological stations in the California Irrigation 
Management and Information System (CIMIS) were used. The purpose of this analysis is to demonstrate 
that data collected by instruments (which are located at ground level within each of the areas of the 
clusters area) are consistent with the clustering of the satellite- derived time series.  A correlation analysis 
is conducted between the satellite and ground measured GHI time series of 13 CIMIS stations that are 
located within the examined region of interest in this analysis (see Fig. 7). Ground-based time series from 
three clusters are selected to be compared: the San Diego region, the Southern Los Angeles Basin, and the 
Imperial and Coachella Valleys to the east. 
 
 

 
Figure 7 - Segmentation map of the Southern California region into 14 identified irradiance microclimate clusters. Each 
cluster corresponds to ground locations  and is indicated by different color according a decreasing order of the 
variability expression (i.e. the darker color, the most variant average variability). The proposed centers of each cluster 
are shown as white circles at their interior and can be considered as ideal sites for potential solar monitoring. The 
distribution of CIMIS ground-based measurement stations are also indicated (solid blue squares). 

 
The Pearson correlation coefficient results show that high positive correlations (red bands) are clearly 
observed only between locations within the same cluster region (Fig. 8). 
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Figure 8 - Cross-correlation between the CIMIS ground stations (columns) and the satellite-derived data (rows) that 
are depicted in the clustering map (Fig. 7). The top right color of each coordinate corresponds to a correlation 
between the proposed cluster center and the CIMIS data while the lower left color corresponds to a correlation 
between 100 randomly selected pixels in the proposed cluster and the CIMIS data. A red value indicates strong 
correlation (>0.8) between the GHI time series of each of the three cluster centers (see Fig. 7, white circles) and the 
CIMIS ground stations located within the considered cluster (see Fig. 7, solid blue squares), whereas a yellow value 
(~0.6) refers to weaker correlations. 

 
Another validation method used for clustering evaluation was to perform a cross-correlation analysis 
between the time series of the clustering feature #2 (i.e the Δρ time series) to evaluate the intra/inter 
cluster relationship of the proposed clustering distribution. A high intra-cluster correlation is an indication 
of excellent coherence within the clusters. Similarly, low inter-cluster correlation argues adequate 
separation between the clusters. In Figure 9 (left), the average correlation coefficients among all the 
gridded locations belonging to a cluster are shown on the diagonal. The average correlation coefficients 
between all the possible combinations of inter-cluster correlation are depicted on the off-diagonal 
segments. Each of the clusters was numbered in order of decreasing variability (see Fig. 9 right). It is 
apparent that the average intra-cluster correlation remains high (>0.9), while the inter-cluster relationship 
is diminished. Knowledge of the spatial boundaries of correlated/uncorrelated clusters would grant a 
utility's planning and operations insight into locations of optimal production potential coupled with 
uncorrelated variability allowing for optimal spatial averaging of resource fluctuations. 
 

 
Figure 9 – Left: Cross-correlation analysis between the Δρ time series in order to evaluate the intra/inter cluster 
relationship of the proposed clustering. Each column and row of the correlation map is numbered so as to correspond 
to the cluster labels (right), according a decreasing order of the variability expression. A high intra-cluster correlation 
is an indication of excellent coherence within the clusters just as low inter-correlation argues adequate separation 
between the clusters. It can be seen that the average intra-cluster correlation remains high (>0.9), while the inter-
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cluster relationship is diminished. 

 
6. Summary 
The main accomplishments and conclusions of this subtask are as follows: 

 Determination of the optimal number and the spatial distribution of regions of coherent global 
irradiance variability based on an unsupervised learning cluster analysis. 

 Depending on the clustering feature, there are 16 or 14 different solar variability microclimates in 
Southern California. The choice between 16 or 14 clusters depends on clustering feature #1 or 
#2, respectively. 

 8 (or 7) of these clusters have their centers located within the SDG&E service area. 
o 1 cluster center is in an area with strong topographical constraints. 

 We recommend installation of GHI sensors at locations with no sensor in proximity of 4 miles of 
the cluster center (AMO , SOB , WSY , RAN , TDS , MPE and FBK). 

 All sample rates should be lowered to 30s to resolve temporal variability by clouds. 

 A comparison with available ground measurements confirms the coherence of the clustering. 

 Knowledge of areas with similar/dissimilar average daily variability can inform improved planning 
and subsidies for (i) strategic siting of both centralized and distributed solar generations and (ii) 
effectively reducing variability through coherently optimal spatial averaging. 

 The conducted methodology can efficiently be applied to any gridded dataset and any service 
territory (i.e. both larger and smaller spatial domains as well as finer and coarser temporal 
scales). 
 

Corresponding Deliverable: 
A detailed description of the methods used in this subtask can be found in Ref. [18].   
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